Processing math: 0%
\newcommand{\sech}{\mathop{\rm sech}\nolimits} \newcommand{\csch}{\mathop{\rm csch}\nolimits} \newcommand{\R}{\mathbb{R}} \newcommand{\basis}{\underline{\mathbf{e}}}
Current Page
Hyperbolic paraboloid

Navigation

Hyperbolic paraboloid

Object type: Surface

Definition

In \R^3, a hyperbolic paraboloid is a set of points (x,y,z) satisfying the equation z = \left(\frac{x}{a}\right)^2 - \left(\frac{y}{b}\right)^2 for some constants a, b > 0. Every intersection with a plane z = c_0 \ne 0 is a hyperbola, and intersections with the planes x = 0 and y = 0 yield parabolae. Below, the hyperbolic paraboloid with a = b = 5 is shown.

A hyperbolic paraboloid

Be sure to identify the important curves obtained as intersections, as pointed out above.

Intersection with the plane x = 0 Intersection with the plane y = 0 Intersection with the plane z = 0.1

Parameterisation

The hyperbolic paraboloid is the image \mathbf{r}(\R^2) where \mathbf{r}(x,y) = \basis\begin{pmatrix}x\\y\\\left(\frac{x}{a}\right)^2- \left(\frac{y}{b}\right)^2\end{pmatrix}.

Properties

All properties given below are with respect to the parameterisation \mathbf{r} given above.

Parameter-curve tangent vectors

The parameter-curve tangent vectors are \mathbf{r}_x(x,y) = \basis\begin {pmatrix}1\\0\\2x/a^2\end{pmatrix}, \quad\quad \mathbf{r}_y(x,y) = \basis\begin {pmatrix}0\\1\\-2y/b^2\end{pmatrix}.

Standard unit normal

The standard unit normal vector field is \mathbf{\hat{N}}(x,y) = \frac{1}{\sqrt{4x^2/a^4+ 4y^2/b^4+1}} \basis\begin{pmatrix}-2x/a^2\\2y/b^2\\1\end{pmatrix}.

Area element

The area element is dA = \sqrt{\frac{4x^2}{a^4} + \frac{4y^2}{b^4} + 1}~dxdy.

First fundamental form

The first fundamental form of the hyperbolic paraboloid is \mathcal{F}(x,y) = \begin {pmatrix}1 + \frac{4x^2}{a^4}&&-\frac{4xy}{a^2 b^2}\\-\frac{4xy}{a^2 b^2}&&1 + \frac{4y^2} {b^4}\end{pmatrix}.

Second fundamental form

The second fundamental form is \mathcal{M}(x,y) = \frac{2}{\sqrt{\frac{4x^2}{a^4} + \frac{4y^2}{b^4} + 1}}\begin{pmatrix}\frac{1}{a^2}&&0\\0&&-\frac{1}{b^2}\end{pmatrix}.

The 'multiplication function'

\newcommand{\f}{\underline{\mathbf{f}}}

The surface z = c~xy, where c \ne 0 is a constant, is a hyperbolic paraboloid. More specifically, it is a hyperbolic paraboloid, as defined above, with a = b and rotated 45° about the z-axis. The most intuitive way to see this is to perform a change of linear basis in \R^3, from \basis to \f, according to \f = \frac{1}{\sqrt{2}} \basis\begin{pmatrix}1&&1&&0\\-1&&1&&0\\ 0&&0&&\sqrt{2}\end{pmatrix}. Let the new coordinates be X, Y, Z. Then \begin{pmatrix}x\\y \\z\end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix}1&&1&&0\\-1&&1&&0\\0&&0&&\sqrt{2}\end{pmatrix} \begin{pmatrix}X\\Y\\Z\end{pmatrix}. Therefore, z = \left(\frac{x}{a}\right)^2 - \left(\frac{y} {a}\right)^2 \Leftrightarrow Z = \frac{2}{a^2} XY. That is, Z = c~XY with c = 2/a^2. Below we give the properties of the surface z=xy with its obvious parameterisation \mathbf{r}(x,y) = \basis\begin{pmatrix}x\\y\\xy\end{pmatrix}.

Parameter-curve tangent vectors

The parameter-curve tangent vectors are \mathbf{r}_x(x,y) = \basis\begin{pmatrix}1\\0\\y\end {pmatrix}, \quad\quad\mathbf{r}_y(x,y) = \basis\begin{pmatrix}0\\1\\x\end{pmatrix}.

Standard unit normal

The standard unit normal vector field is \mathbf{\hat{N}}(x,y) = \frac{1}{\sqrt{1+x^2+y^2}}\basis \begin{pmatrix}-y\\-x\\1\end{pmatrix}.

Area element

The area element is dA = \sqrt{1+x^2+y^2}~dxdy.

First fundamental form

The first fundamental form is \mathcal{F}(x,y) = \begin{pmatrix}1+y^2&&xy\\xy&&1+x^2\end{pmatrix}.

Second fundamental form

The second fundamental form is \mathcal{M}(x,y) = \frac{1}{\sqrt{1+x^2+y^2}}\begin{pmatrix}0&&1\\ 1&&0\end{pmatrix}.

Curvatures

The Gaussian and mean curvatures are K = \frac{-1}{\left(1+x^2+y^2\right)^2}, \quad\quad H = \frac {-2xy}{\left(1+x^2+y^2\right)^{3/2}}.