$ \newcommand{\sech}{\mathop{\rm sech}\nolimits} \newcommand{\csch}{\mathop{\rm csch}\nolimits} \newcommand{\R}{\mathbb{R}} \newcommand{\basis}{\underline{\mathbf{e}}} $
Current Page
Logarithmic spiral

Navigation

Logarithmic spiral

Object type: Plane curve

Definition

A logarithmic spiral is an image $\mathbf{r}(\mathbb{R}^+)$ where $$\mathbf{r}(t) = a e^{b t} \underline{\mathbf{e}}\begin{pmatrix}\cos{t}\\ \sin{t}\end{pmatrix},\quad\quad\forall t \in \mathbb{R}^+,$$often written, with some abuse of notation, as the 'polar equation' $r = a e^{b \varphi}$.

A logarithmic spiral with
 a = b = 1/10

Curvature

The curvature function of the logarithmic spiral is $$\kappa(t) = \frac{1}{ |a|\sqrt{b^2+1}e^{b t}}.$$